This contribution presents the analysis of waveguide problems involving general boundary conditions of perfect magnetic wall. This type of boundary condition is used in electromagnetic solvers very commonly when the device under analysis has physical symmetry, in order to speed up the computation time. This paper is focused on extending its use in problems having this type of boundary condition in the lateral and transverse walls of the waveguides involved in the problem. The presented formulation, based on the mode-matching method, will be applied to classical waveguide devices, but also to address radiating problems with a novel formulation. Different applications will be targeted, and the simulation results will be compared with those obtained by other numerical techniques (based on different solvers), validating the presented approach as another suitable tool for computer-aided design.